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Abstract: Assessing breast cancer risk from imaging remains a subjective process, in which 

radiologists employ simple computer aided detection (CAD) systems or qualitative visual 

assessment to estimate breast percent density (PD). Machine learning (ML) models have become 

the most promising way to quantify breast cancer risk for early, accurate, and equitable diagnoses, 

but training such models in medical research is often restricted to small, single-institution data. 

Since patient demographics and imaging characteristics may vary considerably across imaging 

sites, models trained on single-institution data tend not to generalize well. In response to this 

problem, MammoDL is proposed, an open-source software tool that leverages a U-Net architecture 

to accurately estimate breast PD and complexity from mammography. With the Open Federated 

Learning (OpenFL) library, this solution enables secure training on datasets across multiple 

institutions. MammoDL is a leaner, more flexible model than its predecessors, boasting improved 

generalization due to federation-enabled training on larger, more representative datasets.  

 

One-Sentence Summary: MammoDL uses the U-Net deep learning architecture to quantitatively 

assess breast tissue density and complexity from mammograms and enables a data privacy 

approach by using federated learning.  

 

Keywords: Breast Cancer Risk, Mammography, Breast Density, Deep Learning, Machine 

Learning, Federated Learning, OpenFL. 
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1. Introduction       

Breast cancer remains the most frequent cancer among women, with about 1 in 8 women 

in the United States developing breast cancer over the course of her lifetime [1]. Furthermore, 

breast cancer is the most common cause of cancer-related death for women worldwide [2]. The 

goal of mammographic screening is to reduce the mortality rate of breast cancer. As such, 

mammography has become the most standard and reliable method for breast screening today. 

Randomized trials and incidence-based mortality studies show a notable decrease in breast cancer 

mortality due to participation in mammography screenings [3-5]. In particular, mammography is 

highly effective in identifying breast cancers before they become fatal [6]. While mammography 

may be widely considered as the gold standard of breast screening, it suffers from relatively poor 

sensitivities ranging from 75% to 85%, with the lowest sensitivity in detecting cancers in women 

with the densest breast tissue [7]. Mammography screenings consist of two-view (mediolateral 

oblique (MLO) and craniocaudal (CC)) bilateral examinations captured as full-field digital 

mammography (FFDM) images. In the United States, a large portion of screenings are also with 

digital breast tomosynthesis (DBT), which capture a 3-dimensional image of the breast, but this 

technique still suffers from diminished sensitivity as breast density increases. Radiologists then 

perform a visual grading of breast density based on the American College of Radiology’s Breast 

Imaging Reporting and Data Systems (BI-RADS). Some radiologists employ simple computer-

aided detection (CAD) systems, which generally present limited improvements [8], especially in 

comparison to their machine learning (ML) counterparts. 

Breast density not only limits the sensitivity of mammographic screenings but is also a 

major risk factor for breast cancer [9]. Over 43% of women in the United States between the age 

of 40 to 74 have heterogeneously or extremely dense breasts [10]. The most frequent method to 

grade breast density is subjective, using the BI-RADS classification of breast density based on 

mammographic images [10-12]. This method does not provide a continuous, real-valued percent 

density (PD), which would help a radiologist better monitor changes in a patient’s breast density 

that point to heightened breast cancer risk, but rather classifies the breast into one of four density 

categories.   

Current efforts to automate quantitative breast density estimates from mammographic 

images come in the form of commercially available software and research tools. The semi-

automated thresholding tool Cumulus remains the current gold-standard area-based breast density 

estimation method for breast cancer screenings. Commercial software for volumetric breast 

composition measurement, like Quantra [13] and Volpara [14], show strong association with 

Cumulus [15] but with several key limitations. These tools determine breast density from x-ray 

beam interaction models, which make underlying assumptions on metadata to simplify estimates 

that can lead to inaccurate results [9], especially if some of the prerequisite metadata is not 

available. Such commercial software may be expensive and may suffers from limited 

interpretability, as the tools do not output a spatial map delineating the dense tissue from the non-

dense tissue in the mammogram.  Research tools [16-28] come with their own set of limitations. 

First, with the exception of LIBRA, such tools are not freely available, which not only decreases 

their likelihood of adoption but also the ability to benchmark their performance with other 

available PD estimation methods. Second, these research tools have been trained on small, single-

institution datasets [9], a consequence of the data silo problem that plagues the medical imaging 

field. 

Upon the advent of deep learning (DL), convolutional neural networks (CNN) have 

become the workhorse for fully automated mammographic density estimation tools [8]. Such 

algorithms rely on sufficiently large and diverse datasets for training, but these datasets can be 

tremendously difficult to obtain in the medical field. Furthermore, single-institution datasets are 
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not sufficient to provide a representative sample for model training and can lead to low-accuracy 

generalization [29]. In addition, multi-institutional collaborations that employ centrally shared 

patient data present numerous privacy and ownership concerns. The solution to these concerns is 

a novel paradigm for multi-site collaboration called federated learning [29], which allows model 

training to leverage data across multiple decentralized institutions without sharing data between 

institutions. Instead, the training process is distributed to each of the data owners and then 

aggregated into a single model, which not only addresses access rights and privacy concerns from 

multi-institutional collaborations but vastly increases the generalizability of DL-based medical 

imaging models as compared to collaborative data sharing (CDS) [29].  

This work presents MammoDL, a breast PD estimation tool that builds upon Deep-LIBRA 

[9], a DL-based improvement to the Laboratory for Individualized Breast Radiodensity 

Assessment (LIBRA) tool [16]. MammoDL utilizes 2 deep learning models (U-Nets) to separately 

segment the breast and dense tissue regions from the mammogram in order to accurately estimate 

PD. In contrast to Deep-LIBRA, which uses separate U-Nets to remove the background and to 

remove the pectoralis muscle, MammoDL uses one U-Net to do both by directly segmenting the 

breast in the mammogram. Furthermore, while Deep-LIBRA segments the dense tissue using 

traditional ML modeling, particularly a support vector machine (SVM), MammoDL replaces this 

step with deep learning by employing a U-Net to perform this segmentation. Thus, MammoDL is 

a fully DL-based pipeline for PD estimation that is more lightweight and flexible than Deep-

LIBRA. Lastly, MammoDL leverages federated learning capabilities offered by the Open 

Federated Learning (OpenFL) library [30] to increase the accuracy and generalizability of breast 

PD estimation with respect to the ground-truth labels produced by a “gold-standard” Cumulus 

reader. It should be noted that MammoDL is designed to be a hybrid model that combines an ML 

algorithm with a radiologist assessment, which is shown to be more effective than either of the 

two operating independently [31].  

 

2. Materials and Methods 

 MammoDL was conceived as the solution to three different problems facing the broader 

breast cancer risk assessment community. First, ML-based breast PD estimation tools tended to 

include numerous segmentation steps or classification/regression tasks, leading to overly complex 

models that would either generalize poorly or present significant computational costs that limited 

their usefulness. As a result, the goal was for MammoDL to be a lean ML model with comparable 

accuracy to its predecessor, Deep-LIBRA. Feature pyramids to detect objects at different scales 

[32] have already penetrated the medical imaging space, with examples like multi-class 

segmentation in chest radiographs [33], which motivated MammoDL to execute a multi-

segmentation task that offered better generalization to new mammogram images (Fig. 1b). Second, 

the problem of small, single-institution training datasets was addressed by incorporating a 

federated learning pipeline into MammoDL, a measure taken to further enhance model 

generalization (Fig. 1a). Finally, we have made MammoDL freely available on GitHub for all 

those interested in the code and models related to this work. 

 

2.1.   Study Datasets 

 The dataset used for model training and validation (Table 1) consisted of negative FFDM 

screening exams obtained from the Hospital of the University of Pennsylvania (HUP), 

Philadelphia, PA, and the Mayo Clinic (MC), Rochester, MN [9]. It included 6.713 bilateral CC-

view images from 1,679 women from the MC and 1,147 bilateral MLO-view images from 575 

women from HUP. The ground-truth PD labels were curated on Cumulus by a “gold-standard” (> 

20 years of experience estimating PD with Cumulus) human reader. The holdout test dataset 
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consisted of similar data from HUP and the MC; it consisted of 278 MLO-view images from 110 

women at HUP and 6463 bi-lateral CC and MLO images from 1628 women at the MC. The HUP 

data is racially diverse, which is an important dataset characteristic to accurately assess breast PD 

[34]. 

In preparation for the multi-segmentation task, all images were labeled with breast masks 

such that Class 0 corresponded to the background and pectoralis muscle, while Class 1 

corresponded to the breast. What remained was the portion of the mammogram containing only 

the breast, which acted as the input for the second segmentation model, in which Class 0 

corresponded to the non-dense tissue, while Class 1 corresponded to the dense tissue.  

 

2.2.   Data Pre-Processing 

Each original mammogram, stored as DICOM images, was pre-processed by removing the 

metal tag in the image, down-sampling the images to ensure a standardized shape across the cohort 

(i.e., 512x512), rescaling pixel intensities to [0,1] using min-max scaling, and removing the metal 

tag in the mammogram. These images are the inputs to the breast segmentation model during both 

training and inference (Fig. 3a). The inputs to the dense tissue segmentation model are further pre-

processed by removing non-breast pixels (determined by the manual breast mask during training 

and the predicted breast mask during inference) and re-normalizing pixel values with min-max 

scaling (Fig. 3c).  

 

2.3.   Model Architecture 

Due to the wide use of residual connections in many state-of-the-art neural network 

architectures and their contributions to breakthroughs in computer vision, the ResNet [35] was 

selected for this medical imaging task. ResNet architecture not only eases the challenges of training 

deep neural networks (e.g., by avoiding the vanishing gradient and degradation problems) but 

boasts outstanding generalization to new data points [36]. The ResNet is employed as the encoder 

for a U-Net, [37] a widely used segmentation module that operates by first down-sampling and 

then up-sampling an image, creating the “U”-like shape for which it is named. The specific ResNet 

architecture selected was the ResNet34, and the weights were obtained from pre-training on 

ImageNet data [38]. Modifying the U-Net with a pre-trained ResNet34 encoder (Fig. 2) brings the 

aforementioned ResNet architecture advantages to the segmentation task plus an increase in the 

speed of training due to the ability to obtain pre-trained ResNet encoders [39]. MammoDL consists 

of two such modified U-Nets, the first for identifying the breast from the entire mammogram and 

the second for delineating the dense tissue region from the breast. 

During evaluation and inference, predicted segmentations from each U-Net are resampled 

to the original image size. The number of pixels in each predicted segmentation are calculated as 

a measure of area, with the area of the dense tissue region divided by the area of the breast region 

to return the breast PD (Fig. 3d). 

 

2.4.   Federated Learning 

The primary motivation for training the MammoDL model in a federated manner was to 

expand the size and diversity of the medical training data and facilitate multi-institutional 

collaborations without having to share the data among institutions [29, 38, 40-42]. In the field of 

medical imaging, the impact of federated learning to a ML-based model cannot be understated, 

with its addition increasing generalization accuracy by up to 35% [42]. In the aggregator-server 

federated learning framework [38], each participant contributing model updates using their own 

data is known as a collaborator, with a single aggegator node combining these model updates into 

a single consensus model. For the purpose of this work, collaborator nodes are hospitals that own 
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a dataset of FFDM images in which the dense breast tissue is labeled. The DL model is trained 

locally at each collaborator node for a specified number of epochs. The aggregator node is 

connected to the collaborator nodes by remote procedure calls (gRPC). OpenFL enables these calls 

to occur via a mutually authenticated transport layer security (TLS) network connection. Through 

this secure channel, the collaborator nodes pass tasks, model and optimizer weights, and other 

metrics in order for the aggregator node to combine the model weights to construct a global 

consensus model, which is then passed back to the collaborator nodes. Each such process is a 

“federated training round”, and continues for preset number of rounds. 

OpenFL was used to simulate a federated learning scenario, where the MC and HUP were 

collaborator nodes in independent compute processes. To avoid cross-institutional data sharing, 

the model weights were aggregated across all datasets by taking a weighted average of updates 

after each epoch, where the weights were proportional to the dataset size. OpenFL ensured that the 

multi-institutional collaborations were secure, especially for those ML model builders who seek 

to protect their model intellectual property or those data holders who wish to uphold the privacy 

of their information [30].  

 

2.5.   Model Training and Development 

Both U-Nets were trained with the same hyperparameters. They were trained with a batch 

size of 16, a learning rate of 1e-4, and weight decay of 1e-4. The models trained for 30 epochs 

with the Adam optimizer. Data augmentation (random horizontal and vertical flipping of images) 

was used to improve model generalization. The entire dataset was randomly split into training and 

validation datasets using a 4:1 ratio, respectively. Validation performance was used for 

hyperparameter optimization; thus, the model is evaluated on a holdout test dataset in addition to 

the validation dataset to provide a fair assessment of algorithm performance. 

 

2.6.   Model Evaluation 

The MammoDL algorithm was evaluated by calculating the mean absolute error (MAE) 

between the true and predicted percent density values across the test data. MAE was chosen over 

mean squared error (MSE), or root mean squared error (RMSE) for its interpretability to clinicians, 

as MAE directly estimates the average error of the model in its percent density 

prediction. However, MAE does not provide a full picture of algorithm performance because it 

does not spatially capture segmentation accuracies. Thus, the Dice-Sorensen coefficient (DSC) 

[43], a widely used performance metric for segmentation tasks [44], was used to evaluate the 

performance of the individual segmentation models. DSC essentially measures the area of overlap 

between ground-truth segmentations 𝑋 and algorithmic segmentations 𝑌. It is computed by the 

equation 𝐷𝑆𝐶 =  
2|𝑋∩𝑌|

|𝑋|+|𝑌|
. The DSC value ranges from 0 to 1, with 1 perfect overlap of the ground 

truth and predicted segmentations. Reported DSC values are averaged across images. 

 

2.7.   Code Availability 

All of the work described here is freely available for those who would like to iterate and 

improve upon this algorithm via our GitHub page https://github.com/ramyamut/MammoDL. 

   

3. Results 

 

3.1.   Evaluation on validation dataset 

The model trained on both datasets using a standard centralized training scheme resulted 

in PD MAEs of 3.7918 and 3.9711, breast segmentation DSCs of 0.9896 and 0.9813, and dense 

https://github.com/ramyamut/MammoDL
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tissue segmentation DSCs of 0.7755 and 0.7078, on the MC and HUP validation datasets, 

respectively. The model trained on both datasets using our federated training scheme resulted in 

PD MAEs of 3.9740 and 4.2811, breast segmentation DSCs of 0.9880 and 0.9727, and dense tissue 

segmentation DSCs of 0.7634 and 0.6787, on the MC and HUP development datasets, 

respectively. The models trained on single-institution datasets had much worse performance 

metrics than the models trained on both datasets (Table 2). 

 

3.2.   Evaluation on independent test dataset 

The model trained on both datasets using a standard centralized training scheme resulted 

in PD MAEs of 3.8616 and 3.9937, breast segmentation DSCs of 0.9893 and 0.9722, and dense 

tissue segmentation DSCs of 0.7745 and 0.6879, on the MC and HUP test datasets, respectively. 

The model trained on both datasets using our federated training scheme resulted in PD MAEs of 

3.9586 and 4.2409, breast segmentation DSCs of 0.9881 and 0.9657, and dense tissue 

segmentation DSCs of 0.7637 and 0.6417, on the MC and HUP test datasets, respectively. The 

models trained on single-institution datasets expectedly performed much worse than the models 

that utilized both datasets for development (Table 3). 

 

4. Discussion 

The results suggest that there is a demonstrated need to train on multi-institutional datasets, 

as models trained on both HUP and MC data significantly outperform those trained on either HUP 

or MC data only. Additionally, we have shown that models trained on solely HUP or MC data 

tended not to generalize well to data from other sources. Furthermore, the model trained with 

federated learning achieved nearly the same performance as the model trained with a standard 

centralized training scheme, demonstrating that our federated model is robust, and that federated 

learning can be used to solve the problem of breast PD estimation. 

The generalization performance of the MammoDL model is compared with that of some 

breast PD estimation tools mentioned in the introduction of this work. Even with an optimized 

cutoff value for risk stratification, Quantra suffers from a sensitivity of 65% and a specificity of 

77% when performing BI-RADS classification, where scores of D3/D4 denote high-risk densities 

and D1/D2 denote low-risk densities [45]. As Volpara requires the same metadata as Quantra, 

these software tools tend to behave similarly [9], while the outputs of semi-automated thresholding 

tools, like Cumulus, are known to vary noticeably based on the expertise of the individual 

operating the tool [11]. As a result, MammoDL and Deep-LIBRA are the standout performers 

when it comes to generalization to unseen mammogram images, with both models boasting strong 

testing accuracy metrics. The MAE for the PD estimates of MammoDL are lower than those 

reported by Deep-LIBRA and LIBRA (Fig. 4). However, the crucial difference between 

MammoDL and Deep-LIBRA is that MammoDL offers a federated learning pipeline that, when 

trained on more than HUP and MC data, will exhibit even better performance due to learning from 

larger, more diverse training data. Furthermore, MammoDL is a leaner, more flexible model that 

requires fewer segmentation steps and no non-DL classifiers.  

In the future, the goal is to incorporate datasets from more institutions to further validate 

the robustness of this model and its federated training algorithm across diverse populations, as well 

as to integrate the training pipeline into a larger framework, such as the Generally Nuanced Deep 

Learning Framework (GaNDLF) [46], which would allow for wider distribution, more robust 

training (by leveraging a standardized set of pre-processing, augmentation, anonymization, and 

DL architectures), and easier hardware-independent deployment. In addition, we hope to bridge 

this gap by creating a user interface for clinicians to easily use our tool for breast cancer risk 



Unsubmitted Manuscript: Confidential 

Template Revised September 2022 

8 

 

assessment. This user interface is still in development and hence is only discussed in the conclusion 

of this work.  

 

 

5. Conclusion 

A deep learning pipeline was implemented to calculate breast PD from input 

mammograms. The MammoDL model produces a validation MAE of less than 5% and an 

interpretable spatial map showing the segmented breast and dense tissue regions that clinicians 

value over black-box predictions. A robust federated training capability was presented that 

preserves privacy while maintaining the benefits of training on multi-institutional datasets, enabled 

by OpenFL. We have made our code publicly available on GitHub in hopes that our tool will 

accelerate breast cancer research and clinical care.  
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Fig. 1. System-level diagram of MammoDL. (a) Three collaborator nodes are shown, with each 

performing local training and then transfering the relevant tasks, model and optimizer weights, and 

other metrics to the aggregator node. (b) The aggregator node represents the two UNet 

architectures with ResNet34 encodings. Model/metric updates occur in the aggregator node, which 

train the model to execute segmentation of the breast and dense tissue based on information from 

all of the collaborators combined. After training is complete, a user can run inference on a new 

FFDM image to return a breast PD estimation and a spacial mapping that shows the dense tissue 

delineated from the non-dense tissue. 
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Fig. 2. Diagram of UNet with ResNet34 encoder. The left-hand portion of the UNet architecture 

corresponds to the “down-sampling” or “encoder” section, where the ResNet34 leverages 2 × 2 

adaptive average pooling to progressively reduce the dimensions of the mammogram image while 

increasing the number of feature maps. The ResNet34 operates in five distinct blocks separated by 

pooling layers, the first corresponding to a single 7 × 7  convolutional layer with batch 

normalization and ReLU activation and the last four corresponding to 32 3 × 3 convolutional 

layers with batch normalization and ReLU activation. The last layer in the ResNet34 is typically a 

fully-connected classifier layer, which is omitted in this UNet architecture. The left-hand portion 

represents the “up-sampling” or “decoding” section, which involves mirror-like 2 × 2  up-

convolution operations separating convolutional layers until the mammogram image returns to its 

original size, albeit with only a single channel.  
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Fig. 3. Stages of the segmentation process in the MammoDL training pipeline. (a) This image 

shows an unprocessed FFDM in MLO-view from the HUP dataset. (b) After pre-processing, which 

includes removal of the metal tag, normalization to [0, 255], down-sampling to 512 × 512, and 

adjustment of contrast, the first UNet segments the breast from all other parts of the FFDM image, 

including the background and pectoralis muscle. Some data augmentation does occur at this stage, 

limited to flips across the x- and y-axis. (c) The background and pectoralis muscle are removed 

from the image entirely. Since the initial image was in MLO-view, the absence of the pectoralis 

muscle is noticeable. The area (i.e., number of pixels) corresponding to the breast is returned. (d) 

The second UNet delineates the dense tissue from the non-dense tissue. The area corresponding to 

the dense tissue is returned. The output of the second segmentation task is divided by the output 

of the first segmentation task, representing the proportion of dense tissue detected in the FFDM 

image. This value is returned as a percentage.   

 

 
Dataset Type Training and Validation Test 

Institution MC HUP MC HUP 

Number of Images 3,314 1,147 6463 278 

Number of Women 1,662 575 414 110 

Screening Start Date 2008 2010 2008 2011 

Screening End Date 2012 2014 2014 2014 

White (%) 98 47 94 - 

Black/Other (%) 2 53 6 - 

 

Table 1. General characteristics corresponding to the datasets. Each dataset is accompanied 

by its institution, the number of FFDM images present, the number of women in the screening 

cohort, the year that the screening began, the year that the screening finished, the percent of white 

subjects present in the screening and the percent of black/other subjects present in the screening. 
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Although race information was not available for the test HUP subjects, it is known that the racial 

distribution of the cohort was similar to that of the diverse screening population at HUP [35]. 

 
Training 

Type 
Training/ 

Validation 

Data 

Performance on MC Validation Data Performance on HUP Validation Data 

  MAE (%) Breast 

DSC 
Dense DSC MAE (%) Breast 

DSC 
Dense DSC 

Federated HUP + MC 3.9740 0.9880 0.7634 4.2811 0.9727 0.6787 

Centralized HUP 13.3893 0.9545 0.0037 9.0138 0.9766 0.2732 

Centralized MC 21.4865 0.9865 0.4162 13.8530 0.1389 0.1895 

Centralized HUP + MC 3.7918 0.9896 0.7755 3.9711 0.9813 0.7078 

 

Table 2. Performance on development validation dataset using federated versus centralized 

training. As expected, the models trained on both the HUP and MC data perform better than those 

trained on single-institution datasets, which provides strong motivation for the need for multi-

institutional collaboration in ML-based medical imaging. The performance of the federated 

training scheme closely approaches that of the centralized one, model But the centralized training 

scheme presents numerous privacy and ownership concerns, while maintining the privacy of 

patient mammogram data. Therefore, the federated learning pipeline represents a crucial addition 

to breast PD estimation tools in order to ensure generalization performance is maximized. 

 
Training 

Type 
Development 

Data 
Performance on MC Test Data Performance on HUP Test Data 

  MAE (%) Breast 

DSC 
Dense 

DSC 
MAE (%) Breast 

DSC 
Dense 

DSC 
Federated HUP + MC 3.9586 0.9881 0.7637 4.2409 0.9686 0.6417 

Centralized HUP 12.2529 0.8245 0.0060 6.8729 0.9625 0.3523 

Centralized MC 27.4804 0.9827 0.3815 11.2794 0.3954 0.3210 

Centralized HUP + MC 3.8616 0.9900 0.7745 3.9937 0.9722 0.6879 

 

Table 3. Performance on test dataset using federated versus centralized training. The trend 

seen in Table 2 is replicated here.  
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Fig. 4. Generalization performance of MammoDL in comparison to other breast PD 

estimation tools. This bar plot illustrates the testing accuracy exhibited by MammoDL, Deep-

LIBRA, and LIBRA. The y-axis represents the MAE with respect to the the “gold-standard” 

Cumulus PD values. The bars for Deep-LIBRA and LIBRA represent the 3 reported cross-

validation folds in the Deep-LIBRA paper [9]. MammoDL has two bars, the former representing 

the performance of the federated model and the latter showing the results of the centralized model 

(Table 3). All 3 models were tested on data from the Mayo Clinic, although the test dataset 

consisted of different images for MammoDL. The generalization behavior of the federated and 

centralized MammoDL models are better than those of both Deep-LIBRA and LIBRA.  


